
"- 18 IMAGE SEGMENTATION USING THE MILITARY SPECIFICATION 1/i
1758A HICROPROCESSOR(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA P D CODY DEC 85

UNCLASSIFIED F/G 9/2 UL

.hEEEEEEEElhEE
EEEEEEEEE-mEIl
EhEEEEEBhEEEEE
EhhEEEEEEEEEEE
EEEEEEElhEEEEE

I i c~ I . Illl2.5

4 L

11111-25 I - 1.8

MICROCOPY RESOLUTION TEST CHART

)ARDS 1963-

.1%
4 7w

NAVAL POSTGRADUATE SCHOOL
Monterey, California

0

lI :

DTIC
A FECTE

E14 18~

B

THESIS
IMAGE SEGMENTATION USING THE MILITARY
SPECIFICATION 1750A MICROPROCESSOR

by

Percy Dean Cody III

C> December 1985

U

rm Thesis Advisor: C. H. Lee

S Approved for public release; distribution is unlimited.

86 2 J4

-" °

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
11a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

bOpproved for public release;
2b DECLASSIFICATION/DOWNGRADING SCHEDULE istribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (IfgPcable) Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

Monterey, California 93943-5100 Monterey, California 93943-5100

Ba. NAME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applkable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

S 11 TITLE (Include Security Classification)
IMAGE SEGMENTATION USING THE MILITARY SPECIFICATION 1750A MICROPROCESSOR

-12 PERSONAL AUTHOR(S)

Cody, Percy Dean III
- -', 13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S PAGE COUNT

Master's Thesis FROM TO 1985 December 81
*2 16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP 1750A/F9450 Microprocessor, Image Segmentation

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

The use of digital computers to process various types of sensor date is
becoming increasingly common, in both civilian and military applications.
One example of this use is the enhancement of photographs to increase their
clarity, or emphasize a particular detail.

Previously, the computers used to perform this processing was done in
specialized circuits, mainframe or minicomputers. More recently, extremely
powerful microprocessors have become available that show potential to be

- applied in this area.
This thesis explores a particular class of image processing, known as

*Image Segmentation, implemented on a particular microprocessor. The
microprocessor is the Fairchild F9450, the first civilian version of the
1750A military specification microprocessor.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

CRUNCLASSIFIEDIPUNLIMITED 0 SAME AS RPT. -DTIC USERS UNCLASSIFIED
2a. O OF .ESPOIBLE INDIVIDUAL "4N e AreaCode) 2 20.CE SYMBOL

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

* 1

SECURITY CLASSIFICATION OF THIS PAGE (W3m DOAt ~M

This microprocessor, along with its associated chip set, appears
well suited to image processing, having high speed capability,
direct floating point arithmetic instructions, multiprocessing
capacity, and the ability to address up to sixteen megabytes of

_. memory.
Additionally, a sophisticated software development tool set,

[' known as Microprocessor Pascal, is available to develop and
test software for the 1750A/F9450 microprocessor. This tool set
allows software to be developed on the VAX-11/780 minicomputer,
targeted for final use on the 1750A/F9450.
This work utilized the Microprocessor Pascal tool set to test

and compare representative Image Segmentation algorithms. The
* speeds of execution and code sizes of the programs were determined

for the F9450/1750A microprocessor and the VAX-11/780 minicomputer
and were compared to determine the feasibility of using the
F9450/1750A microprocessor for image segmentation work.

A Several images resulting from the image segmentation processing
are included, as well as the Pascal programs used to perform the
processing.

0

V

'.

[cconsion For

* i bI

S N 0102- LF-014- 6601

2 SECURITY CLASSIFICATION OF THIS PAGE(Ithef Date En eoe)

-i k 1
-*d~ - -. - -. - " -4 -S

Approved for public release; distribution is unlimited.

Image Segmentation using the Military

Specification 1?50A Microprocessor

by

Percy D. Cody Ill
Lieutenant, United Stated Navy

B.S.E.E. University of Kansas, December 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December, 1985

Author: (ec~D
Perc tD. Cody I11 I

Approved by: __
'ti-wa14,Thesis Advisor

Alex Gerba Jr.,Second Reader

Harriett B. Rigas A
Chairman, Department of Electrical

and Computer Engineering

/John I . Dyer
Dean of Science and Engineering

3

ABSTRACT

2 The use of digital computers to process various types of

sensor data is becoming increasingly common, in both

civilian and military applications. One example of this use

is the enhancement'of-photographs to-increase their clarity,

or emphasize a particular detail.

Previously, the computers used to perform this processing

was done in specialized circuits, mainframe or

minicomputers. More recently, extremely powerful

microprocessors have become available that show potential

to be aRplied in this area.

This thesis explores a particular class of image

processing, known as Image Segmentation, implemented on a

particular microprocessor. The microprocessor is the

Fairchild F9450, the first civilian version of the 1750A

military specification microprocessor.

This microprocessor, along with its associated chip set,

appears well suited to image processing, having high speed

capability, direct floating point arithmetic instructions,

multiprocessing capacity, and the ability to address up to

sixteen megabytes of memory.

Additionally, a sophisticated software development tool

set, known as Microprocessor Pascal, is available to develop

and test software for the 1750A/F9450 microprocessor. This

4

ZlI

1: -_ 7 ;_. %717 , .- .. .4-7

-)tool set allows software to be developed on the VAX-ii/780

minicomputer, targeted for final use on the 1750A/F9450.

This work utilized the Microprocessor Pascal tool set to

test and compare representative Image Segmentation

algorithms. The speeds of execution and code sizes of the

programs were determined for the F9450/1750A microprocessor

and the VAX-11/780 minicomputer, and were compared to

determine the feasibility of using the F9450/1750A

microprocessor for image segmentation work.

Several images resulting from the image segmentation

* processing are included, as well as the Pascal programs used

to perform the processing.

r

-. V. - ' ---

TABLE OF CONTENTS

I. INTRODUCTION 10

A. GENERAL 10

B. PURPOSE OF WORK t

II. 1750A ARCHITECTURE AND SOFTWARE TOOL SET 14

A. HARDWARE REQUIREMENTS 14

B. 1750A/F9450 MICROPROCESSOR 15

C. MICROPROCESSOR PASCAL TOOL SET19

I Ill. METHOD OF EXECUTION SPEED ESTIMATION23

A. GENERAL 23

B. METHOD OF SPEED ESTIMATION 25

IV. IMAGE SEGMENTATION ALGORITHMS 28

A. GENERAL 28

B. PROGRAM i OPERATION28

C. PROGRAM 2 OPERATION 30

V. ANALYSIS OF THE TEST RESULTS 36

A. GENERAL 36

B. COMPARISON OF PROGRAMS I AND 237

C. ANALYSIS OF RESULTS38

D. COMPARISON OF VAX AND 1750A/F9450 SYSTEMS 39

E. SUMMARY 46

VI. CONCLUSIONS AND RECOMMENDATIONS 48

A. PROBLEMS ENCOUNTERED WITH TOOL SET • • .48

:J6

B. METHODS OF IMPROVING SPEED 50

C. SUGGESTIONS FOR FURTHER WORK 54

APPENDIX A: IMAGE SEGMENTATION PROGRAM I LISTING . .5S8

APPENDIX B: IMAGE SEGMENTATION PROGRAM 2 LISTING .. 71

LIST OF REFERENCES 79

INITIAL DISTRIBUTION LIST.....................80

7

LIST OF FIGURES

1. iHIP IMAGES BEFORE AND AFTER SEGMENTATION 12

2. PROGRAMMER'S REGISTER MODEL OF 1750A/F9450 . . 16

3. F9450/1750A MICROPROCESSOR ARCHITECTURE 17

4. SOFTWARE DEVELOPMENT TOOL SET22

5. SUMMARY OF PROGRAM TEST RESULTS24

6. ASSEMBLY LANGUAGE PROGRAM SAMPLE 25

7. SAMPLE TIMING CALCULATION, BASED ON FIGURE 6 • 26

* 8. CALCULATION OF PIXEL EDGE MAGNITUDE31

9. INPUT ARRAY TARGET AND BACKGROUND WINDOWS 32

10. RESULTS OF VARYING COST FACTORS IN BAYSIAN

PROBABILITY (PROGRAM 2) 35

11. SUMMARY OF PROGRAM TEST RESULTS. 36

12. INDEX MODE/BASE RELATIVE ADDRESSING. 41

13. COMPARATIVE ASSEMBLY CODE TRANSLATIONS 43

14. PARALLEL PROCESSING SCHEME FOR MULTIPROCESSING 56

15. SERIES PROCESSING SCHEME FOR MULTIPROCESSING
(PIPELINING) 57

8

ACKNOWLEDGEMENTS

I wish to gratefully acknowledge my thesis advisor,

Professor Chin-Hwa Lee, who provided invaluable assistance

in completion of this thesis.

I would also like to express my gratitude to Professor

Alex Gerba Jr. for his assistance.

09

.,'.-..,

.' N"

S

p

S, '

I-9

S%-

i"-.'"

:. . . ""**.**,.**,---9

I. INTRODUCTION

A. GENERAL

The application of image processing is expanding into

many new areas including the military. In many cases the

need exists to enhance a desired image often in the presence

of background clutter, to allow target identification, etc.

This is often done by an automated system. One type of such

- processing is the method of Image Segmentation.

Image Segmentation involves the conversion of an image

with multiple levels of gray values (which can represent

color, brightness, or infrared radiation as examples) into a

"binary" image, which has only two levels. This has the

effect of converting a "half tone" image Into a "black and

white" one. Figure 1, as an example, shows the Input and

output images from an Image Segmentation system. The input

is a ship image composed of pixels which vary over a range

from zero to two hundred and fifty five. The output image is

*J, the same ship where the image pixels have only two values;

zero and one. This process has the additional effect of

removing a great deal of the background clutter.

Like most computer graphics applications, image

segmentation is a very "CPU intensive" process; requiring a

large amount of computation. Performing this type of

processing in real time will require very high speed in both

01
4... 10

hardware and software. For this reason such processing is

often done with specialized, custom designed hardware. In

this study, the possibility of efficiently performing image

segmentation with a standard, general purpose microprocessor

is explored.

B. PURPOSE OF WORK

The purpose of this thesis is to determine and compare

the speed of image segmentation in two different computer

architectures: the 1750A/F9450 microprocessor, and the VAX-

11/780 minicomputer using the VMS operating system.

Comparisons will be made in terms of actual speeds of

execution, sizes of generated code, and overall efficiency.

From these factors, it should be possible to determine which

method is more appropriate for a given application. While

the images used for this work are infrared images of ships,

the techniques used are applicable to a wide range of

applications and sensor types, including areas such as

geological surveys by aerial photography, medical imaging,

and so forth.

It should also be noted that, while a particular

microprocessor and software development system is used here

for this work, it is not a unique selection, and other

combinations of tools could be equally applicable.

This work will present a description of the hardware and

software used, give a brief discussion of two representative
0

:i 11

S•

image segmentation algorithms, and present the results of

the comparison between the two algorithms.

It was necessary to determine the 1750A/F9450 CPU

operating speeds indirectly (for reasons to be discussed).

The method which was derived for doing this will also be

explained and demonstrated.

Finally, the results derived will be analyzed, and a

rational to explain them will be discussed relating to the

actual merits of the 1750A/F9450 microprocessor, versus the

VAX-11/780, for image segmentation processing.

Before Processing:

After Processing:
=4'.

Figure 1. Ship Images Before and After Segmentation

12

.4.

i , , . .., , . , .. . ' , .. .'." " , , : .",."".. " '." ', ,',".'- y-, ,.. L .. .

'-

It Is discovered that, in general, the 1750A/F9450

microprocessors are capable of performing image segmentation

efficiently, but not normally fast enough for real time

operations, unless certain special methods are used.

Possible methods of increasing the speed of operation are

presented.

9I J.

o-"

"f

6.",

°1

0-.. ,

-. - - - - - - -.

II. 1750A ARCHITECTURE AND SOFTWARE TOOL SET

A. HARDWARE REQUIREMENTS

As stated earlier, virtually any type of image processing

makes great demands on the hardware and software used. Image

segmentation is no exception.

The first hardware requirement is the need to store and

process relatively large amounts of data. This results from

the fact that images require at least two dimensional data

arrays, and each pixel requires enough bits to represent the

desired number of intensity levels in the image. In some

cases the large amount of memory required may be reduced

somewhat by means of efficient algorithms which require only

a small portion of an image to be processed at a time

(through such means as "overlap and save" methods of

convolution). In general however, the trend is towards "real

time" systems with large capacity, such as operator displays

in aircraft and medical imaging systems.

The second hardware requirement is for the processor to

operate at sufficiently high speeds to meet the design

needs. If the processor is to analyze only off-line data,

the speed requirement is not as great. Many military and

industrial systems however, often require the processing

work to be done in real time. This creates the need for a

14

% ""' %C

microprocessor to operate at higher speeds than those

previously available.

B. 1750A/F9450 MICROPROCESSOR

The microprocessor and software development tool set

selected for this work are capable of supporting the memory

and speed requirements Just stated.

The microprocessor selected for use is the Fairchild

F9450 16-bit microprocessor, which is a civilian version of

the military 1750A microprocessor. The programmer's register

diagram of the 1750A/F9450 is shown in Figure 2 [Ref. 1].

The block diagram of the actual chip architecture is

illustrated in Figure 3 [Ref. 2).

As illustrated in Figure 3, the 1750A microprocessor

architecture has five sections: data processor,

microprogrammed control, address processor, interrupt and

fault processor, and timing unit. The data processor allows

use of a variety of data types and direct floating point

operations instructions. The address processor uses an

independent Incrementer for the Instruction Counter, and

also allows a wide range of addressing modes for the

microprocessor. The interrupt processor and timing units are

especially useful for multiprocessor operations, as will be

discussed later.

The architecture is similar in overall conception to the

VAX-11/780, but lacks some features. One example is the lack

V
15

of a separate numeric coprocessor, similar to the VAX's

Floating Point Accelerator option. Additionally, the

1750A/F9450 lacks any built-in facilities for direct

implementation of "virtual memory."

The 1750A/F9450 instruction set has a number of

instructions to make use of its powerful architecture. Among

these are instructions to control the two on- chip timers,

-'. and a Built -In Function to allow the direct use of user

defined Instructions.

RO PENDING INTERRUPT
RI MASK REGISTER

RSP FA U LT R EGIS T ER I

R4
"5 INSTRUCTION COUNT

R6

R 7 STATUS WORD
RS
FI ,,-,SYS. CON G. REG.

~RIO

Rll TIMER A

1R12 TIMER B
R13
R14

R15

Figure 2. Programmer's Register Model of 1750A/F9450

- 16

A'.9

-".°Z _~< .-~ A2'

"S ILa- O

0

I I. I

. .

;5 2

U z

0f
II

Ia 0 Z. 'S .:20 'a £ -

%,,

!g 00
go 4 L) 5

L U

*f a

17 ~ (

III ~ I *

The 1750A/F9450 CPU is a highly sophisticated

microprocessor, as can be seen in Figures 2 and 3. It

includes sixteen 16 bit general purpose registers, a 16 bit

Status Word register and a System Configuration Register in

its internal architecture. The general purpose and Status

Word registers are very similar in concept to the VAX-11/780

architecture, which uses sixteen 32 bit general purpose

registers, and a 32 bit Processor Status Longword register.

(Of course, 32 bits allow a greater range of instructions,

and greater data accuracy. The architecture itself however,

is quite similar.) The 1750A/F9450 System Configuration

Register contains information relating to the chip's

external environment, such as the presence or absence of an

additional microprocessor, memory protection unit, or block

protection unit, and the interrupt mode in use. The VAX

system doesn't use a configuration register, and it is

normally installed in a more standardized configuration.

The 1750A/F9450 CPU is capable of operating at clock

speeds of up to twenty megahertz. This microprocessor is one

component of a chip set which also includes a Memory

4Management Unit (the F9451) and a Block Protect Unit (the

F9452). Alone, the microprocessor is capable of addressing

up to two million 16 bit words of random access memory, and

up to twenty million words with the Memory Management Unit.

The 1750A/F9450 Is highly optimized for real time operation.

The features to achieve this capability include a

18

S%

. he15A/95 i igl ptmzd o ra im prain

sophisticated 16 vector interrupt handling system, built-in

multiprocessor capabilities, and two programmable timers on

the chip. This microprocessor also features 32 and 48 bit

floating point arithmetic, built in self-test upon power up

or reset, and fault handling capabilities. This architecture

is highly advanced for a microprocessor, but it is not

comparable in overall capability to a powerful minicomputer

system such as the VAX system, which is the architecture for

. comparison, as the VAX system is designed for multi

user/timesharing systems.

One of the significant differences between the two

_Vi systems Is the size of the assembly language instruction

I. sets. The 1750A/F9450 has 141 instructions in its set, while

the VAX has over 240. This greater flexibility should enable

a VAX compiler to convert a high level language statement

into a lesser number of assembly language statements than

the 1750A/F9450 compiler would require. Another advantage of

the VAX system, is a richer range of addressing modes. This

will be discussed later in this thesis.

- C. MICROPROCESSOR PASCAL TOOL SET

The software development system selected for use is

called Micro Processor Pascal (MPP), and was developed by

Texas Instruments for use with the 1750A/F9450

microprocessors. It is a complete tool set for software

development, allowing software for the 1750A/F9450 to be

.. "-'.

developed on a VAX-11/780 minicomputer targeted for final

use on the 1750A/F9450 microprocessor. The tool set

utilizes a superset of standard ANSI Pascal, and adds

facilities to use the 1750A's multiprocessor/multitasking

capabilities. The tool set includes a compiler, an

assembler, a binder and linker, a reverse assembler (to

generate assembly code from the compiler output) and a

debugger-simulator. The components and operation of the tool

set is shown in Figure 4 [Ref. 3]. The Reverse Assembler

which is crucial to the work done here, is particularly

useful for allowing hand optimization of a program. This

manual tuning of code would allow increased speed of

operation, for time critical programs, as a skilled

programmer normally writes more efficient code than a

4 compiler.

Another optimization feature of the tool set is the

ability of the compiler to partially optimize the object

code itself during the compilation. This is dependent upon

the programmer using certain programming conventions as

described in the MPP/1750A User's Manual. For example, it is

found to be faster and more efficient to pass parameters to

a procedure by reference than by value. Also, the IF-THEN-

ELSE statement is faster than a corresponding CASE

statement, if the possible paths can be handled by an IF

statement. Even the ordering of variables and data types in

the declaration portion of the program is found to affect

20

the execution speed. Further details can be found in the

User's Manual.

This tool set was used to write, debug, and test Pascal

versions of the two image segmentation algorithms studied

here. In addition to determining execution speed estimates

using the microprocessor tool set, the same algorithms

were also compiled and run under VAX Pascal. This was to

allow comparison of the relative speed of execution, and

compiler code size generated in the two different

environments.

C7.

21

7PASCAL SOURCE
, PROGRAM

REVERSE COMPILER

iASSEMBLER AND
II..Ehhm.hhCODE GENERATOR

"4-- CODE MAY BE

HAND OPTIMIZED
AT THIS POINT,

'Ar TO IMPROVE
PERFORMANCE

MPX EXECUTIVE
; ASSEMBLERAN

i I LINKER
NAND

,. BINDER

RUMSIMULATORETSU

."' ND FMICROPROCESSOR
, .., DEBUGGER (F9450)

*'.' . Figure 4. Soft'ware Development Tool Set

(4.2

4'.%

',e

T.=. ..

,'''S .'.,, ,. .. ","" ...'"". , ''. -.,, ''', . .',"L.',' " . ..; ,.'. , .,,...'.-.

.---

III. METHOD OF EXECUTION SPEED ESTIMATION

A. GENERAL

One of the main purposes of this work was to determine

the speed with which the 1750A/F9450 microprocessor could

process the image arrays In representative segmentation

algorithms (to be described later). Due to a lack of an

actual microprocessor system to run the programs on, a

method of estimating processor executing speed indirectly

had to be found.

As discussed earlier, the tool set Reverse Assembler

allows the generation of assembly language programs from the

compiled Pascal source code. From this reverse assembled

code, it was possible to calculate the total number of

executions of a particular instruction (a "JMP" or "CALL"

for instance). The Preliminary Data Sheet of the 175OA/F9450

processor contains timing data specifying the amount of time

that a given instruction takes to execute. Combining these

[* pieces of information, it is possible to estimate execution

times of the assembly language program. The assembled code

size (in number of lines of assembly code) was readily

obtained by studying the code listings produced by the VAX

and Microprocessor Pascal compilers respectively. The speed

estimate is of course, not as accurate as actual operational

23

- V. %° -

. LkV/i. .'?;-::.* ;j.........* Q**

tests on a 1750A/F9450 microprocessor, but It should be a

reasonable representation of the processor's performance.

The final results are summarized in Figure 5.

%1

Program 1 Program 2

Pascal 462 lines 382 lines
Source
Code

VAX 548 lines 597 lines
Assembly
Code

MPP 911 lines 1367 lines
Assembly
Code

VAX 8.31-8.41 sec 14.37-14.9 sec
Execution
Time

MPP 8.78-8.91 sec 14.24-14.8 sec
Execution
Time

Figure 5. Summary of Program Test Results:

The two programs, and the meaning of each item in the

table will be discussed in detail in Chapter 5, but it can

be seen at a glance that the 1750A/F9450 microprocessor

should be at least comparable overall in speed to the

powerful VAX-11/780 minicomputer. This speaks eloquently of

the power of this microprocessor.

24

9

S-" B. METHOD OF SPEED EXECUTION ESTIMATE

As to the actual method of execution speed estimation, a

--* brief but representative example is now presented. After a

Pascal program has been compiled by the microprocessor tool

set, the Reverse Assembler is used to generate an assembly

language version of the same program. A small sample of an

assembly language program is shown in Figure 6, and will be

discussed in this example.

LOOOA EQU S
LIM R2, OOF5A
CB R14, 00003
BLT L0027
LIM R12, 0403E, R13
LB R14, 00002
MSIM R2, OO5FB
AR R12, R2
A R12, 00003, R13
LR R4, R12
STC 0, 00000, R4 Loop Iteration Path
LIM R12, 03B3E, R13
LB R14, 00002
MSIM Rd, O05FB
AR R12, R2
A R12, 00003, R14
LR R4, R12
STC 0, 00000, R4
INCM 1, 00003, R14

- BR LOOOA

' Figure 6. Assembly Language Program Sample

The code shown is a small portion of the assembly

*language program from one of the two algorithms used. It is

25

'I,

a loop, as shown by the arrow, and it is executed a total of

1530 times. From the known number of executions of the loop,

the number of each type of instructions contained in the

loop, and the timing information from the Preliminary Data

Sheet, it is possible to perform the calculations shown in

Figure 7.

Type of Instruction:

Load/Store Add/Subtract Compare Jump Multiply/Divide

LI: 3 INCM: I CB: 1 BLT: I MSiM: 2
LR: 2 A: 2 BR: I
LB: 2 AR: 2
STC: 2

9 5 1 2 2
x .2 uS x .2 uS x .4 uS x .5 uS x 1.85 uS

1.8 uS + 1.0 uS + 0.4 uS + 1.0 uS + 3.7 uS

= 7.9 uS/iteration of loop

1530 iterations of loop x 7.9 us/iteration of loop

0 = 3.094 seconds

(Note: the "EQU" takes no execution time.)

Figure 7. Sample Timing Calculation, Based On Figure 6.

26

: ;Qy.@:.~.&iji2&, .'.Q

As can be seen, the calculation is a relatively simple

application of arithmetic, but if based upon accurate

timing data, the method should yield reasonably accurate

estimates.

The calculations, as already noted, are not difficult,

especially for small sections of code as demonstrated.

However, for the actual programs, such as those used in this

thesis, where there are hundreds of lines of code, the work

becomes laborious, and error prone due to miscalculation

and other human errors. If this method were necessary for

extended use, it might be possible to automate the process,

to allow a computer to produce the timing estimates.

Because the calculations here were done by hand, there is

a definite possibility of human error, however the

calculations were rechecked, so any error should be

relatively small. Since the method is only an estimate of

the execution speed, it is expected that there will be some

errors inherent in the method.

2

1..

""' 27

0-"

IV. IMAGE SEGMENTATION ALGORITHMS

A. GENERAL

As the purpose of this work is to study the effectiveness

of the 1750A/F9450 microprocessor in implementing Image

Segmentation, two representative methods of segmentation

were selected for testing. Both methods yield similar

outputs for similar input data, but use different algorithms

to process the input data. Both methods were written in

Microprocessor Pascal, and the Pascal listings of each

program are included in Appendix 1. The two methods will

hereafter be referred to as Programs I and 2.

In order to compare and contrast the actual algorithms

most accurately, the two programs share as many procedures

as possible. Among other procedures, the two programs share

identical input and output procedures.

B. PROGRAM I OPERATION

Program 1 uses a relatively simple threshold scheme. The

Input data array is read from a disk file Into the program's

data array for processing. This image data array is 256 rows

'.- . by 64 columns in size, and each element of the array is a

byte (an integer between 0 and 255) representing the gray

level of a pixel in the input image.

28

@*

The program is written on the assumption that the image

consists of a target positioned near the center of the

image, surrounded by background. The program initially

measures a histogram of the background intensity values by

processing the left and right hand most 1.6 columns. This

histogram is an array of the number of pixels having a given

intensity versus that intensity.

Following histogram generation, a value representing the

average background intensity distribution, is computed by

4..; dividing the sum of all histogram intensity values by the

* number of intensities having nonzero values in the

histogram. Finally, a limit value is generated by

multiplying the average background intensity distribution

value by an empirical threshold value which is pre-selected

by the user.

Once the limit value is computed, it is used to process

the input image array into a binary output array of the same

dimensions. Each image pixel's intensity is read, and the

number of pixels having the same intensity value is

determined by checking the histogram. If this number of

pixels is greater than or equal to the precalculated limit

value, the corresponding binary pixel Is set to one. If the

number of pixels is less than this limit, the corresponding

binary pixel is set to zero. The entire binary image is

generated in this fashion, pixel by pixel.

29

'.9-I

This threshold technique tends to generate a significant

number of false target and false background pixels, which

will appear am random "noise" in the binary image. To

eliminate these false pixels, Program I uses a final

filtering procedure called "REMOVE". This procedure compares

each pixel of the binary array, with those surrounding it.

4If the center pixel has one value, while the surrounding

ones are all of the other value, it is assumed that the

center pixel is a false one, and its value Is reset to the

opposite value.

The entire scheme is dependent on the assumption that the

image of the target is brighter overall than the background.

However, this assumption could be reversed, by switching the

inequality in the conversion process.

C. PROGRAM 2 OPERATION

The second program is similar in overall operation, and

data flow, but uses a more sophisticated algorithm to

- perform the processing. Whereas the first program uses only

a single pixel attribute (intensity), to determine whether a

pixel is a target or background, the second program (also

listed in Appendix 1) uses two attributes: intensity, and a

'"" computed quantity called "edge magnitude". The edge

magnitude is a value which indicates the likelihood that a

pixel is part of an edge, or corner of pixels of similar

intensity. This is more probable if the pixel is a part of

30

the target, since the background will tend to be a more

unstructured pattern of intensities.

The formula used to compute the edge magnitude of an

individual pixel is shown in Figure 8 [Ref. 4]:

11 12 13 EO = IDxI + IDyl
<= 3x3

18 10 14 Pixel Dx = (11 + 218 + 17) - (13 + 214 + 15)
Array

17 16 15 Dy = (II + 212 + 13) - (17 - 216 + 15)

Figure 8. Calculation of Pixel Edge Magnitude.

As shown in Figure 8, each pixel in turn, is viewed as

the center of a 3 x 3 array of pixels. The Dx and Dy values

are calculated from the surrounding pixel intensities, with

the equations shown in Figure 8. The desired edge magnitude

EO, is the sum of the absolute magnitudes of Dx and Dy. This

computation must be performed for every pixel and will be

used in the data processing. This will thus involve a great

deal of calculation.

As in the first program, the input image array is divided

into a target window and a background remainder, though

these windows need not be of the same size and/or shape as

those in Program 1. This is shown in Figure 9.

31

BACKGROUND WINDOW

TARGET WINDOW

Figure 9. Input Array Target and Background Windows

Program 2 first processes the target window, and each

pixel's edge magnitude is calculated. A two dimensional

histogram is then developed, containing the number of pixels

having each combination of intensity and edge magnitude,

versus that combination of intensity and edge magnitude.

After completing the target window, the program performs the

same operation on the background pixels, generating a

separate background histogram.
S.

The program then processes the target window pixels by

using a Baysian probability method. For each pixel, the

probability of that pixel being a target pixel and of being

a background pixel Is determined by the use of the target

and background histograms. If the target window and

background window areas were equal, the probabilities can be

read directly off the histograms. If the areas were not

32

equal, the histogram values must be appropriately scaled.

The program in this case used equal sized windows, avoiding

the need for any scaling.

For each target window pixel, the target and window

probabilities are determined from the corresponding

histogram values, and are inserted into the following

inequality [Ref. 5]:

C(B:T)P(X=T) > C(T:B)P(X=B)

Where: C(B:T) is the cost of misclassifying a pixel as
a background pixel, if it is a target.

P(X=T) is the probability that the pixel is a
target.

C(T:B) is the cost of misclassifying a pixel as
a target pixel, if it is a background.

P(X=B) is the probability that the pixel is
a background.

If this inequality is true, the pixel being checked is

set to one in the binary array. If the equation is false,

the pixel is set to zero.

4' The two cost factors C(B:T) and C(T:B) are constants that

S; the user preselects. The most appropriate value will depend

upon the application, and the input data being processed.

One likely situation is to set the two equal in value. If

or this is done, the minimum number of pixels will be

misclassified, though there will still be some

misclassifications. In Figure 10, the same image was

33

processed, but the cost values were changed for each run, to

show the effects of varying these cost values.

In the algorithms used in this work, the analysis was

based on the two pixel attributes previously stated.

However, the same Baysian probability system can be modified

to handle three or more attributes.

One of the advantages of Program 2, is that if the cost

factors are properly selected, it generates less of the

random noise mentioned earlier, than Program 1. This can

eliminate the "Remove" procedure required by Program 1.

0

4'.- ."

34.

S' C(T:B =1

C(B:T)=1

CCT:B) =2

C(BT)=3

5~35

V. ANALYSIS OF THE TEST RESULTS

A. GENERAL

The two image segmentation algorithms discussed were both

run for the 1750A/F9450 and VAX systems respectively. The

time of execution was actually measured for the VAX system,

and calculated for the 1750A/F9450 microprocessor. The code

size was determined for each, and all the results were

reported in Figure 5. This table is repeated in Figure 11,

for easy reference.

Program 1 Program 2

4. Pascal 462 lines 382 lines

4. Source
Code

VAX 548 lines 597 lines
Assembly
Code

MPP 911 lines 1367 lines
Assembly
Code

VAX 8.31-8.41 sec 14.37-14.9 sec
Execution
Time

MPP 8.78-8.91 sec 14.24-14.8 sec
Execution
Time

Figure 11. Summary of Program Test Results:

36

B. COMPARISON OF PROGRAM I AND 2

The primary purpose of this study is to determine the

applicability of the 1750A/F9450 CPU as to implement image

segmentation algorithms. Based upon the MPP and VAX

execution times shown in Figure i, the Immediate answer

would seem to be that it is indeed, if the VAX itself is

. 'adequate. For both Programs I and 2, the execution times of

the two methods are virtually identical, differing by only a

fraction of a second. The fact that the two times are almost

identical in this case, suggests that, not only does the

Microprocessor Pascal tool set allow the programmer to

develop 1750A/F9450 software on a VAX minicomputer, but that

program execution times may be estimated by executing the

same programs in the VAX Pascal system, rather than

calculating them as was done in this work.

It should be noted here, however, that the execution

speeds are somewhat variable, as indicated by the range of

times in the table. Part of this is due to the variance in

input images, which will affect processing time. It would

also be affected somewhat, in the VAX case by the presence

or absence of a Floating Point Accelerator. The accelerator

would not be expected to make a significant difference in

this particularly work, because neither program makes

extensive use of floating point operations, instead they use

byte and integer values.

37

, .," .- .- .I.+ • + w t , . p + w . ..- . . , - - - " " + . • • - + ' . ..

C. ANALYSIS OF RESULTS

Sheer execution speed is not the sole criterion for

determining the value of a given hardware or software

system. Other factors can include the support requirements

of the hardware, the memory requirements of the software

(such as array size, etc.), and any other specialized user

needs.

In this study, where the chip used was a version of a

military microprocessor (the 1750A), a significant

restriction is the memory requirements. This is the case, as

the microprocessor might be installed in an aircraft,

missile, or other vehicle where space and weight are

critical factors. This can limit the amount of physical

memory circuitry that can be used, regardless of the amount

of logical memory that the microprocessor can actually

address.

In image processing, large arrays are normally used to

store the image data. One method of attempting to minimize

-c the storage requirements of these arrays is to use "packed

arrays" to store data. This can reduce array storage

requirements by approximately one half. Packed arrays can

have the unfortunately additional effect of increasing

execution time, if the system is inefficient in dealing

with packed data. The VAX ha., a variety of data types, that

allows efficient implementation of the packed arrays. In

i particular, there is a Packed Decimal String data type in

38

S'

.** '. . * '.:~~ -- >

the VAX system. The 1750A/F9450, unfortunately, does not

have such a data type. This requires the Microprocessor

Pascal system to use procedures (parts of the run time

support library) to pack and unpack the data. This imposed

a significant amount of the execution time estimates for the

1750A/F9450, of both Programs I and 2. In Program I, for

instance, approximately 3 of 8 seconds of execution time was

spent by the 175OA/F9450 system, in packing and unpacking.

Another significant difference in the use of memory, is

the size of the program itself. This information is

contained in Figure 11, in terms of the number of lines of

assembly code for each program, of each system.

In this comparison, the VAX minicomputer has a

significant advantage. As shown in Figure 11, the first

program had 462 lines of Pascal source code. The VAX system

translated this into 548 lines of assembly code, and the

1750A/F9450 required 911 lines of assembly code to do the

same thing. This shows that the VAX compiler needed only a

1.19:1 ratio in memory expansion to accommodate the compiled

* code, while the microprocessor needed a 1.97:1 ratio. For

the second program, the ratios were 1.56:1 and 3.58:1.

* D. COMPARISON OF VAX AND 1750A/F9450 SYSTEMS

While the two programs produced significantly different

ratios between the two systems, the VAX system is

* consistently on the order of twice as efficient as the

39

0O%
.w- I

-- '..v..

175OA/F9450 microprocessor tool set. This is a significant

difference, especially considering the nearly identical

execution times. The difference in assembly code size is

obviously a matter of concern, since it may be possible to

improve the situation, if the cause can be found.

One obvious possibility is the efficiency of the compiler

in each system. The VAX system is a commercially available

system, and is relatively mature, having gone through the

normal revisions as required over a number of years. The

1750A/F9450 tool set Is the first version of a

microprocessor system, intended largely for military use.

Most likely it will be improved in later versions, but this

doesn't solve the immediate problem.

This situation may be improved somewhat, by two methods.

Firstly, a skilled programmer can take greater care in

writing the Pascal version of the program, making it more

Sefficient. It may be possible, for example, to replace a

long sequential portion of code, by a shorter loop, which

may require less assembly code to implement. Other methods

of improvement are those stated earlier, such as improved

parameter passing, and the use of IF-THEN-ELSE instead of

the CASE statement. Secondly, the Reverse Assembler and

Assembler can be used to optimize the assembly code itself.

This manually optimized code can then be incorporated into

the desired program.

40

0//

. ,.. :. " 1 ' ,, ,*...'. ;.....). - : .- . k ,. ,,. , .. . , , ,-..,... :.;,., .- :.

Another significant advantage of the VAX system, is the

larger instruction set and types of addressing modes it has,

compared to the 1750A/F9450. One very useful addressing

mode, shared by the two systems, is known as the Index

Addressing Mode by the VAX system, and the Base Relative

Mode in the 1750A/F9450. In each case, this mode allows the

use of an index register to specify the index of an array

entry, thus specifying which element of the array is being

addressed. This is shown pictorially in Figure 12 CRef. 6].

* TABLE

INDEX ARRAY BASE ARRAY ELEMENT 1
- (is 3) 10 (1e OtABLE)

ELEMENT 2

NOTE: SYSTEM MUST ELEMENT 3
KEEP TRACK OF

-. , ELEMENT SU EEEE. ELEMENT 4

Figure 12. Index Mode/Base Relative Addressing

This mode is particularly useful in array intensive

programs, and both of the programs used in this work make

frequent use of data arrays. Unfortunately, the 1750A/F9450

Base Relative mode allows only a 256 offset from the base

address, which limits its usefulness in this work. The

41

.......

7,0

r r r n. w, t- u in .- -w , - . - -- r ' w i -. - -- ' . ,7 - n r r r r= -w =: -=

smallest array used in either program contains 16k arrays,

which is well beyond the capability of the 256 1750A offset.

The powerful VAX system allows an eight, sixteen or

thirty two bit offset values, allowing a potential four

gigabyte offset, and can thus easily handle our 16k arrays.

This gives the VAX a significant advantage over the

microprocessor. The VAX can handle the array offsets in

hardware, while the 175OA/F945O must do it in software, with

the compiler generating a variable to perform this function.

This is one instruction which can account for the larger

microprocessor assembly code.

As an example of how significant this type of index

addressing can be, an example is presented. In Figure 13, a

small sample of Pascal is listed, along with the VAX and

1750A assembly code translations of it. The difference in

size is obvious, and the reasons for the VAX code being

significantly smaller will now be explored.

It is not necessary to have a complete knowledge of

assembly code for either system to see that there are

significant differences in the manner in which the two

systems translate the code. One immediate advantage of the

VAX system, is the fact that even at the assembly code

level, the system uses the same identifiers as the Pascal

source code. This is shown in statements such as "MOVL

INFILE,R3". The 1750A/F9450 assembly code on the other hand,

uses only register numbers to perform the same function.

42

Pascal Source Code.
FOR I:= 1 TO 64 DO
BEGIN

FOR J:= I TO 256 DO
IMAGEUl,J]:= INFILE-(J];

END;

VAX-11/760 1750A/F9450
1$: MOVL #i,R12 L Ri3,LEX*1,R9

.*NOP STC I,OOOO,R14
NOP L0004 EQU $

2$: MOVI. R12,1 LIMI R2,00040
MOVL #i,R0 CB R14,00000
NOP BLT L002D
NOP STC 1,00001,R14

3$: MOVL. RO,J LOOOA EQU $
INDEX J,#1,#256,i,#ORi LIM R2,00100
INDEX 1,#i,#64,#256,#O,R2 CB R14,00001
ADDL2 R1,112 BLT L002A
MOVL INFILE,R3 LIM R12,00005,Ri3

*MOVB -i(R3)[Ri3,IMAGE-257ER23 LB R14,00000
AOBLEQ *256,RO,3* SISP R2,1
CMPL 1,#64 SLL R2,7
BGEQ 5$ AR R12,12
PUSHAB INFILE PSHM R12,Ri2

A -CALLS #I,PAS*GET LB R14,00001
5* AOBLEQ #64,R12,2* PSHM R2,112

RET L R2,04I05,Ri3
LR R12,R2
LB R12,00000
PSHM R2,112
LB R14,00000
SISP R2,1
SLL R2,8
AB R114,00001
SISP R2,1
POPM R3,R3
CALL LDPI*8

*POPM R4,R4
SISP R4,1
POPM R3,R13
CALL STPI*8
INCM 1,00001,R14
BR LOOOA

*L002A EQU $
INCM i,OOOOO,Ri4
BR L0004

L002D EQU $
END

Figure 13. Comparative Assembly Code Translations

43

Upon study of Figure 13, It is possible to find some of

the reasons for the shorter VAX code.

In the VAX code, three lines allow the use of the

powerful VAX Index Addressing Mode. The two lines starting

with "INDEX", allow the generation of values in RI and R2 of

the positions of the desired data element based upon an

input index (I or J), an offset value (0 here), and the data

element size in bytes (1 in this case). More succinctly, for

the first INDEX, RI = (0+J)*1, and for the second, R2

=(O+l)*256. These two values are added, and used as the

index to address the infile array. The line to use the

Index, is MOVB -i(R3)[R1],IMAGE-2S7[R2]. This line

instructs the system to move a byte offset from the first

- element of INFILE, held in R3, by the number of bytes held

in RI, into the position specified in IMAGE-257[R2].

The VAX code of course, uses nested loops, as indicated,

to execute this sequence 16k times. To do this, it makes use

of AOBLEQ ("Add one and branch If less than or equal")

statements. The actual command to "get" the infile, is the

CALLS #I,PASSGET which makes use of a system call.

- The code generated by the 1750A/F9450 system is neither

short, nor easy to understand, as it makes use of a more

primitive set of assembly instructions. As indicated by

Figure 13, almost as much code is devoted to maintaining

track of the nested loop indices, as the VAX uses for the

entire operation. The loop counters are maintained in two

.. , 44

," oo

locations in memory, R14 + 0000 and R14 + 0001 respectively.

These are the locations determined by the contents of R14,

offset by zero and one byte. The portion of code within

brackets, is the code concerned with actually reading the

infile data into the image.

The study of Figure 13 will show that the 1750A must use

three separate PUSH's onto the stack (PSHM's) and three

separate POP's (POPM's) to produce the addresses necessary

to identify the desired infile and image bytes to read and

write. This is because the 1750A, as stated earlier, can

only offset a maximum of 256 from a specified starting

point. To overcome this, the code must "manually" generate

the desired indices, by reading the aforementioned R14+0000

and shifting the high order bytes left (the "SLL" commands)

and manually adding terms to produce the needed terms.

The "CALL LDPIS8" and "CALL STPI#8" lines are the system

calls required to allow the 1750A system read bytes from a

packed array ("INFILE") and write bytes to another packed

array ("IMAGE").

In general then, it can be seen that the capability to

directly operate on larger array indices directly, would

significantly improve code size in the 1750A/F9450 system,

and could also improve processing time. This would be even

more significant for systems using larger arrays than are

used here.

45

do

One useful addressing mode possessed by the VAX system,

but not by the 1750A/F9450, Is the Auto Increment/Decrement

mode. In this mode, the system automatically increments or

decrements the loop index, as required. This is particularly

useful in the programs used here, as both algorithms use

large numbers of loops, and nested loops in particular.

Because of this, any technique such as Auto

Increment/Decrement, is bound to improve the speed with

which either Program I or 2 will execute. Unfortunately,

unlike code optimization, new addressing modes cannot be

readily implemented into an existing system such as the

1750A/F9450 microprocessor. Thus, this particular

shortcoming cannot be easily remedied. The addition of a

Memory Management Unit, such as the aforementioned F9451

could impair memory access times, and thus degrade the

situation further.

E. SUMMARY

In summary, the 1750A/F9450 would appear comparable

overall to the VAX minicomputer in image segmentation speed,

but not in the amount of memory needed to implement such

algorithms.

Assuming the memory requirements of the 1750A/F9450

microprocessor were not objectionable for a given

installation, the next decision would be to determine what

the maximum allowable time for processing an image could be.

46

This would of course be dependent upon the application being

used, so it is not possible to give a hard and fast answer

as to the applicability of the 1750A/F9450. Some general

guidelines may be given however.

If Figure 11 is reviewed it can be seen that, using the

tested algorithms, the best processing time would be with

the first program, and that approximately 8.78 seconds is

required. If the code were highly optimized at both the

Pascal and assembly code levels, it is reasonable to expect

perhaps a 10% improvement in this. This would result in

approximately a 7.9 second conversion time.

If the image being processed were "off-line", such as a

medical x-ray, or certain industrial quality control

applications, the wait of eight seconds might not be

objectionable. This might also be true for some military

applications such as a long range sonar, where the signal

itself may take something on the order of seconds to reach a

target and return.

Many applications however, such as a missile sensor or a

pilot's "heads up display" require a much faster processing

of data. It would not be reasonable for a pilot to expect

his sensors to take eight seconds to update, as a target

might very well move out of range in that time.
or

If it is necessary to attempt to use the 1750A/F9450 in a

role such as real time image segmentation, some way must be

found to speed up the processing.

'47

VI. CONCLUSIONS AND RECOMMENDATIONS

- A. PROBLEMS ENCOUNTERED WITH TOOL SET

The software tool set used In this work is a powerful

*" system. Like any system, it is not perfect however, and some

difficulties were encountered.

One problem surfaced when we attempted to compile program

1. The compiler, as would be expected, has a number of

default settings which control the compilation unless

altered by the user. While these default settings caused no

.7 true problems, the user must be aware of these settings

(Ref. 7]. First, the system defaults to a 72 column maximum

setting. This can cause numerous error messages If a program

is transported from a system which uses a standard 80 column

line, until the compiler default Is changed.

Another default which could cause some problems unless

changed, is the fact that the tool set compiler does not

8 routinely check array indices for out of bound conditions

unless this feature is specifically activated. This is a

helpful feature for such array intensive programs as image

segmentation, and the user should be aware that this feature

is normally off.

More significantly, the Microprocessor Pascal tool set

deals somewhat differently with certain standard Pascal

procedures than might be expected (Ref. 8]. It was

48

discovered for example, that to open a disk file, such as

the image files used, one needed to use not the expected
.4

"OPEN" procedure, but instead either "RESET" or "REWRITE"

alone. It was discovered that these procedures both open

and reset files for read and write operations. It was also

discovered that the procedure "CLOSE" is an external

procedure, and must be declared as such.

The next difficulty occurred when program I had been

successfully compiled. When it was attempted to link the

program, numerous error messages were generated, indicating

that the system was unable to locate a series of procedures

required by the main program. These procedures, bearing such

names as F$GET and LSRD, were not user created, and it was

found that they were supposed to be part of the system's Run

Time Support library. The library was checked, and they were

indeed not included.

At first it was feared that the missing procedures had

somehow been accidentally erased or destroyed. Upon further

study however, it appeared that all of these procedures were

involved with the input or output of program data. This

appeared to be the case, since the names could be mnemonics

for such operations as "file get" and "line read".

After contacting development personnel at Texas

Instruments, it was determined that the procedures were

intentionally missing. The 1750A/F9450 microprocessor was

intended for applications in a wide variety of applications,

49

4%A

* and thus would need to interface with a wide variety of

peripheral equipment, disk drives, terminals, and even real

, time systems such as sensors. Because of this, it was

necessary to keep the 1750A/F9450 as device independent as

possible. To do this, the Input/output routines were not

implemented (though the names such as F*GET were). This

would allow (in fact require) the user to develop the

routines necessary to perform input/output operations with

the user's particular equipment.

It was the lack of input/output capabilities in the tool

set as well as the lack of an 1750A/F9450 hardware@

development system, that dictated the need to develop a

means of determining 1750A/F9450 execution speeds

indirectly. Even if these routines were in place however,

the speed with which a Microprocrssor Pascal program ran on

a VAX minicomputer would not be expected to be the same as

on an 1750A/F9450 microprocessor.

B. METHODS OF IMPROVING EXECUTION SPEED

As described previously, the 1750A/F9450 was found to be

* too slow in execution speed for real time applications.

Therefore, if it is still necessary to use an F9450 or 1750A

microprocessor in real time image processing, it will be

necessary to find some method of increasing either its speed

or the system's actual throughput.

A50

If, in a given application, memory limits are not a

problem, a significant improvement could be made in

execution time by using "unpacked" arrays instead of

"packed" arrays. The data arrays used In the tested programs

were 16 kilobytes in packed size. These would approximately

double in size if unpacked. If the 1750A/F9450 in a given

installation could use multiple megabyte sized memory, it

would be feasible to use such unpacked arrays, and thus

speed up processing significantly. In program I for example,

the execution time would go from approximately 8 to

"- approximately 5 seconds, based upon the execution time

estimates. (Due to the elimination of packing/unpacking

times.)

Another option to speed up processing, is to make use of

multiple processors. This could be done in two possible

ways: operate the processors in parallel, or operate them in

series. Each of these choices offer different methods of

- improving the processing time.

In studying the operation of the two programs, (as listed

in Appendices A and B) it becomes apparent that there are

two main operations involved: histogram generation the

background and target attributes of the pixels, and

- generating the binary output arrays based on these

histograms. In some cases, it may be possible to perform

these operations by two different processors. If the

* processors are working on the same operation, they are said

51

-17- ., -

I : 2!to be working in parallel. If the processors are processing

I-,*

~different operations, they are working in series, which Is

• •-.sometimes also referred to as "pipelinirg".

In paralle oprtonahown in Fiue1,. forrga
i] 2, one processor might be generating the target window

::,. '-histogram, while the other program generates the background

""..:.window. As the two windows are often of the same size, this

would take almost exactly the same amount of time, and thus

Sdivide the total histogram generation time by a factor of

(two. Fol lowing histogram generation, the two processors

Smight also process the binary image in parallel, by perhaps

' working on different portions of the image at the same time.

SOne possible problem with this method, is the difficulty

of having multiple processors addressing the same memory

-''.simultaneously. If not careful ly coordinated, the two

prcsor ih attempt tora rwrite to the same

address at the same time. Fortunately, the 17iA/F950

microprocessor and Microprocessor Pascal tool set are quite

well equipped to work in this fashion. In particular, the

multitasking capabilities of the Pascal version, and the

• ," 1750A/F9450 itself can greatly simplify the coordination of

multiple tasks Additionally, the Memory Management Unit and

! Block Protect Unit in the 1750A/F9450 chip set can greatly

simplify the problem of preventing memory contention.

Another method of preventing memory contention, would be

the use of multi port memory. This relatively new technology

,..-..52

- 4444•

ofhvn util rcsos'drsigth aemmr

.

* allows multiple processors to access the same memory

simultaneously. Of course, the availability of this

technology is not known for all the various applications of

the 1750A/F9450.

In the series, or pipelining case, the task of processing

the data is also divided between the processors. However, as

shown in Figure 15, each processor would perform only one of

the functions, either histogram generation or generating the

binary image. The first processor would histogram the input

image and transfer the histograms to the second processor.

The second processor would then use the histograms to

generate a binary output image. After each processor is

finished, it reads the next input image to perform the same

operations.

The pipelining method is somewhat simpler to coordinate

than the parallel case, as is not a problem in having two

processors attempting to access the same data address

simultaneously. It is only necessary to use an interrupt

system for each processor to alert the other when it is

ready to transfer data from one to the other. This may not

speed up the process as much as the parallel case, as the

histogram generation may not take the same period of time as

the binary generation, so that one processor may sit idle

waiting for the other to finish. However, even if the

processing of a single image is not as fast as the parallel

*method, the series method will normally result in a greater

53

PS

total throughput of images. This may be especially useful if

the system is continuously processing images, as in the case

of a cockpit display for instance.

This pipelining might also be a case were the Built In

Function instruction of the 1750A/F9450 microprocessors

might be put to use. One processor might "call" the other to

generate histograms, and then use them to create output

arrays. This would be easier to implement than an elaborate

handshaking scheme.

In summary of these two methods, the parallel method will

tend to generate a single image more quickly, but the series

method will tend to produce a greater total throughput of

Images. This seems to recommend the parallel method for

individual images, and the series scheme for continuously

updated image systems.

For maximum improvement, some of these methods could be

combined. The same system could make use of improved

algorithms, unpacked arrays, and either parallel processing

or pipelining. A combination of methods might well reduce

the total time for image segmentation to something on the

order of one or two seconds. This might well be fast enough

for use in some real time systems.

C. SUGGESTIONS FOR FURTHER WORK

Further work remains to be done in several areas. One

such area would be to write and implement the necessary

54

input/output procedures needed for the Microprocessor Pascal

tool set, for the VAX-11/780 minicomputer system. This would

allow much more efficient work with the tool set, than the

indirect speed estimates which were done here.

Additional work would also be useful to determine how

much improvement might be gained by use of the pipelining

and/or parallel schemes described. It might be possible to

develop a means of determining exactly when pipelining or

parallel processing would be preferable.

Finally, it would be useful to develop an actual

1750A/F9450 hardware system, to allow further work on

software development. If such a system becomes available, it

would be possible to test the accuracy of the timing

calculations done in this thesis.

45

55

U

vr t I ! . . , . .. - -"

p* HISTOGRAMMING:

INPUT IMAGE ARRAY

T
MICROPROCESSOR #1 MICROPROCESSOR #2

M
E

4 4
TARGET HISTOGRAM BACKGROUND HISTOGRAM

BACKGROUND TARGET

HISTOGRAM HISTOGRAM

MICROPROCESSOR #1 MICROPROCESSOR *2

j 1/2 OF BINARY 1/2 OF BINARY

IMAGE IMAGE
BINARY IMAGE

GENERATION:

Figure 14. Parallel Processing Scheme for Multiprocessing

56

* p

NOTE: THESE MICROPROCESSORS
OPERATE SIMULTANEOUSLY

SERIES
PROCESSING INPUT IMAGE ARRAY
(PIPEUNING)

~MICROPROCESSOR #1

BACKGROUND TARGET
HISTOGRAM

HI4T04IRAM

MICROPROCESSOR #2

FOUTPUT BINARY ARRAY

Figure 15. Series Processing Scheme for Multiprocessing
(Pipel ining)

-7
57

pi.

SI

Q u

~~.0
064

o*

ul 4
If. 0

06 .fl V I-fl 4
06 &4 itf-f

Al 0 0 U '
CA 0 u1. t 4oSf

6* CI~ r- ~ fCM 0
425- ..V3 t-m i 0 40ic 00 2 a(~ =4 to

0 0 00 .) . q c
4' &~ M6- 0W)* 0 G m &

0 C a &U Ee *
S 0 if-n6 S c06;

'4. owwy)) 0 SmE-0 IE
C :ft O Cu 4A*

40 to 0 t- c 55 S 0 Im1. WE6 * O..u N' '0.4.4
0. A0 n 0.a c cm

P; 5- . Nil 0ffq 0 t.S. 00 4 6. .0 0f c .- '. a wCL u ~ cm "3 *.4S'
r. ca to- .6-0 5) a E - ~ ~

o. > 4S I cm-q u EC
f4 0. o ii 1mg Eu. 1 e F-m.v

-h -ZO A CE SFOP I*- IGO C S -- 5M L., -0 4 C" II m a .% av

or C U. 4a

E' * * ~
6- * * * * * MW

58

44

p. 0

0.64
+. 6

00 0 3 01
I N 4a I +

at ' C, k
ie Im

*m N9 e * 00V1caU qr
-.4 * IV -m 6 A_

C) -+ 6 . 0 y

0 *UI 0 m4f VEE

* Of *0 wo . 6 e4040W

*" 611 _'

*h 0c c 0 C-

01 CA00m1 m
*0 In- 6 *4 Er a~

0 Mq CA 0 CL.- a ~ -u-
* M .' .> 0 on

4'' 64 .05 59d6

u
0

CL0 4'

.54 4 SL
14. 01

pgs

c--

Ott CLU 0.

loC 0 r9S.4 U . M

I- CS
o11)s .. a. C .A£1.40 4.. V.

0~. C-1 4P u1-40
.CA C 1c40 0..a~~~ 1 w-+4 6 4

40 0L aU .- I. i

to-& 30IE1 01 p m 0 -'
* n 4S ~ 5 v. I0 w4 .. C 4S4 II IE 0 .61
* L 40 CF -4 N be 0 4C 4' 69

WS O C I0c n.,. *1 a1 . .6
*4.0 0 .. to4 00 M1 -p

4* 01 4 CIO CL.. C ..

u.4 01 0E 0 e 0 4.. ~ 4 ' 1

~- -- . u ig s0 - .4

8~~~~I C3L@6 s I 1 I

0~ ~ C. 5S 4S

*Ch 6-L 4 US-S cm.0 ~

** ** 0 > .0

60

+''o

o 46-

U m ap

..4 .; .4)

41 .0 "

I-, m CLILi ViA
a .cI

a lb AC

C6 CS S4C

-0 66 0

V4 Oi ' SP4

V4 .4 .41. 41.

am w amI5

a C CL~

OE * 0 o.

am Ud v, am *50 6 6 'd 6-

I.c C I- S ,4 W 0

a~ wm *9'9' IU

-I. C ON am F'- am t- S-

.4' 66 L"LJ- S ~ - E
* 6.0 4' ~ U) 0. 010

S m 4) ** -U 'P

! C* a> A0

61

'VV

A m4

V U,

94 C IT. 19

40 4. 1

04 , C I- c
ir- S 94

at I U r- 6
rg .98 1 o

*., cm .4 ICUu
Li0 CL a' I

'U to 'U C 1 4.

@1 i4 a 40 .0 Pm
0 5- S .. 2.4 0 4 UP
4. S m .0 5-10 1

u: 01..-I 34
.0 P4 1. 0 ., 4 a. 4. .0 5-

fm a- 4. ON P

5.u P .0 A IS161 ckt
I~~~ *. a 0' 5 .

-w CL.4.4 .45

In 5 4. * L S P.. . S62e

P0

04 0

V0 C a

c"-da >41

09

0 6 t- CL
r..4 0 >cm

39 C 44

40 > -4 94 lb
14 c. t- C

* f- V.4'

e1 a~ 4. 4- t .45

-0 0 P404

V c* V a 0 c L

A . 41.,

& u CLv a

-. x0464S c

14 -4 -4 049 flU 01 .. 4 >~V

6 .S .4 4 to1 4.- r. OFU 4i 0
S.,d Cm 11= 4 to= 40 WS4SU L".k

w *.5 *.5 6£4 ?- 0 0u f

CL CC > 0 - a .4 5.x 0

44. IN4 0. 0. .. 0a - 0

54 0 0.- .0 06V
* m S "0 44. do6.

%' 4.0 w r_ 0 *** * 0

63

L-' .Z

40 4

40 18C

C >

.~~ +a:I a

C*
4'

06

1 11 'o 4

33 *0~-
.C ~ '-

* ~ .c . .

01 C 4K I bto 06 06 3q L,

+ 14 0 C"

401C4 .4 V4 > ~ '

4' C I-5. 0
* ' 1 .4' 41

'4. '4. %. 0 I I
I0 44 I

0

0, e4 4. oa a.a

.'s goC w V

46

764

0%

404

Ch

.00
CL'

V' .4 4

4 CL

& 0) V4 41C

S~~ -- 4 p-5
> + + P6-

go -, -P

*l 4 Si ..4 41

* + + E

>4 It .4 CLC- 3 - &1 ,4 - 4W

o 6. P. ..4. cO 0 M

02 *.4 .4 to- N - W .
o0 4) to utc.0 V 40 0. u4

SL .u4 of4 .*

C~~~~ 0. P .6 + .01
*~~~ t. w.0 4 D.

Poo.4. CL 0* .01 a~ Go
it. at 6. v444 CL'> 4MP

~ + S 10 0 01.. + 465

dv

40 C

400

+4 .4

> > -s- 4J 4

40 vi

c- >

.0 >1 Is a >,

IE -.U ~ 4 Go 30

SIS 4m.0 .41 l
o w4 0 u >4 -46 41

9~~ IE a. 0I
.es, . 5

46.q p-.C

u'~ c egg > 6

*- -

0

1a4

S 00 06

00

o... 1+03ca

1(.p' Q
cm' ON aa

*.4 0 PC "4"

42 V4 <. I .4 0L
a* SL q.

lu V. 4> N 04-4

.. 4~ *009 0

V0 *wS . 1
Gol C S6wp.. OHP.

0 *L . C CLm S-
3- *0t n 3 S.. q

Cu + .u c

01+ *as 67

0
4.1

40J

C 0

. CL

40 to
"a ' a

O .
I .

IC -,

2% V 4.5

0 40 u 00
0'4 6

SV VC S Go '
0. fo 1 40 0w + C

IV Ip V IL~- 0Ecp

0P 40 34 0 * - '1

U~~a 4, U *01

w U P, .. U0
4. 4 4 0, * w-~ .41

u 4,. uv a cU *C

10~ ~ ~ -p24 o1 . At
9. a u . 4, & V CN -

S. 40 . 44 .4C') vQ C'4 4a0 4-P 10
0 'U G) S 44,
S CL 40 060. 0

I 'U G 4.~ 8

.4

41V

.4140

'u i

.4 to

O64

4A x

0P 0

.. 4 61 *a42

SC * -"V; 04
4.1 A -4 cm4-P 40 0a 3cn*

m EU .0

h 3 CCh

69 '

Z

* "I*

* a u. im -P > to

z u a a a at-

0 ut-VA. to 1.
g,. %4 %11Go1

oL it) L)MV A GoC" 46

a 0 4a -
-V 4' -.4 . 0 I N 04

-vagW CL. CM -P a 40 4.

46-.~ I.P w IS 0 I.

46 0 -0 2 40 *fP fm 0 .* G

u -

u u. *',@ 4. .. 4 .4.4 V
0- & I. s-16I- I. c
3 33 3 33 Go

70

.40

*40
40

6 U

0194 0
CL1

. w a0 U)m
ED 0 6 4 6

I- of* -
94 0 . 41L

u 0 V)
Sa CV) 6~ *0 . '4 0A

ES S .0 I..U

m0

6. wC"C cm . * -4 11 *

to do U 04u C - It1 Ii 4 4 4 t Pu41-
40 A aL IEE *. y A A$

An c I0 I4PV
06 1. Go . 5 0.. 6 110 * L

- 5.0c Z, .04 -14 U q-4i 31

64 z a I eq 1 4U4 * 6 Cc41 .0 0 CiC' z..0 40..4.. Z.- *
VI go - cm - 0 r. c *

Mai. 0s ill * 4 . ~ I9- D
06 4.. 1A citAd . v m ois..u

0 do3 (b 0 .4SGo- S-.1
V4 CL uS. 46 0 S I C Im -4 .4 to U

-- 41 6.0 ** I CA- 0 0 = 1-.4 40CC 4- .01) SI GE -46. 4ame0 ull -
0. 1- U. D 06 u . S 1 I u ~ U

.04 u0 V

01 **-* P a 01

71

% J.~.
Z P7:

w. 4f

0 0 a

S Ma
0..

- c-

4 Ch

0. a. -,

c4 C4 a* .4

*4 *iIs V a a

0 a) ..4 +0o I

C 0 h *0 0 4x

+ **6 -e 1 k
4P 6. %- ' *.4 A 0 41

10 I w u *4 - Im 6 W4
11 - C 0 a Im co eCl

-4 *'U' -.4 91%0.J

* &. a %-0 01.1 *" N4 W 0 P.-4 r4
C4 a'4 4P .4 ,4 *U 0' tou" 41

C o CON .. 1 S'4 V' 0 '4 a. V.

I-e a4 &.4 I- r- 44 CE -
o- im '4'g.u 3C ow' 06.4.6- Go

LaS 6 0 44. .I ' 44

* *I I- s

72:

-~~~r ~ r-r -- - - - - --- - - - - - -

~4V

-~CF 31d unmt P4+. . V* 0 *.-~ IP,
V V LI -

CA 4. w0 v4 +

CI cm L J 4 c.. E l9

a P4 09' m' 9
4. LIS.44m

0 *.

41 0 +~' m
re40 41 1. * la.II N

41 '0 1 09 to CFO I I I
'_541 .0l CPO5

0 og 0 -V4 E . ' m9 L..C" 4. Li1. V4 + l
f-E 09 N-s r4, ~ lU l * 9

U.0 i V49 is CP CPO E.4
.a1 q .' m.4 * 0 1 04. a %a1 to ofb) a94 -' 09 ' 4' i'5

00i 40 E+ 4 4 f '5 V L. 0 4U E0. + I .- CAmU(.) &4 .'5 -V EL ..4 c'5C V. W)O -4 1El.0 Elr... 41 la

0 40 0' 1 4 ~r~ 0 4)r 4r
>p4 c" C 0 44. I' -.4 0) El 64

c N C w ~ f c IE .#v, m41 rg +. 41 m

u.4 -- 0E *0 410 I I99.. + E4. 41
01 ' '5 04' Li94 L -.4 94 1 9 -4

to'4 C 494 0 U9 m.94h -.401
'5 l *. 460 tol9 9 5. ' Um Ch. -S' Lif
V.4 04. 0 9.L em v4LJof ..

u1. 0 El * *5l~ * JlIL 4 IV
ElmMs(CV4. v4 .0rvm El) '-I rl9E9 40.C P 11 -4 1.' 5 1 9 09'509 U -vUEU * q *55 + 04 q5'El

%.l a q& 0V + *a+
4' w. r% 0 Li . 4u '

*El u *El 99t 41 El Li 1 Li 44 . 0.0 09l E1 -P -4

u Im.0 .. 0..iC uI .4 Li at

** * 0 * 4.0 Li4+L1.-u' C O IMILIPI cm i Li** * ' .0 w do 40 4 94 4.V4l~~ 9o 04

i" f9. M5 5' P M~* 0 5 e--

73

4%

13-3 %D, fl. 9 W4
+ *.*4,"a9 4 + .. .1 ul1

-P4" LI c '0'1

U'i441 U0 3. a ~ .4 P

CPI" C ""I A a 41 r A041'- 1 " 4 * 44 v

to PC "'I-m1

vp ~4 c i 54 6
M60o * -a'r1

-~c go -13 -'s
-4 0 w4 P F CM 1 .4'.

+'4 ... 0 U) WU &1 + 410
tU P U4-P'V -' u' cm -4

0U a3 13 0E 'U OPs =
V1314 U 0 Q we3'% " P

*E -. 4 'a C-00C DiSI -1 60 %, 4i g.- r ~ -,4 re -. 4 v4~ Srd le a 41 0 40 40 C 06 1 w4 * -1 NCU e1 . .. * 0 P SI rd a
=N6 oM"' 0 j I's.. o . rm aN

40 4a . w41 * m3
.. I 3"4* %I--'. w4 6 a+

v ,. N a' f'0 P4""
0 M3 -P 41 4N Liw4 cuL

.' l=cC 041 0-I we'9 NgIb

v N -a.. C. 4- u we U 0 -Pd I"v w4 OP31
4Lj4 + J. 444wI 1- I 0

+4'.4 011 13 a -6 + '-4 -
'-4Ll qae '. '.1 N 13-.4 'uP
61S Go to PA ILiI Ch

&3 41a =b0 6- go 0 33
oo' 4a m 0 E1 Sto
'. ""' 1 4 ' 3 0 E.1 an W E

N1 4 41 6- 6-C .0 r. E=' 4
03 013 '. "4 .. I Ila;

CA 'U3I 0.1 * P 10 .. a S a 'u4 ,
'U a41 go4 *6i1 CL4 1P3i a aW 41 'Um.

cm N1 3 * 6 u3 lp

1i ""-1 %oU _j 0 a v1C''
'. 0 uS " a c ' a-4

41 CC* U6-'. C x5 v- as- .v .,$A1L

"4 4 *.4 a ., C A '4.1' in
co- f-1' c * U- 40 41 to Li .0 Jr- ioo S"' *6 0) C' .0 Go4 0 1

41 IM6- * * G o1' ILI, is.

oo-f :- 4 - - 3 as 0USo
41 4 re* '.4 0-4.. 44..4 wq40 .0

5' 74

vi.Li

4. *4

*..4

* -.4
a 4-

*0

*. S. 4-

cp 0 9

"43 (3 L'

0U-6 M. ~ . 0.- cm4

.0 .0 w* VI (6
a~~F U 4 S 4

.0 in 0 w

c ..4 $AS- 4

cc c- .. "4 2 -c" 0 o P2 -"ai 0'. en SI,

0..~ .0 4'' EU U
a Sh q. z* -P

C~dr& IV 9P m . sC 4

a'~. 4..P0* '* C'I OP * U 'W * 5 0V 5 - 4 ~ . W* M

3 ~ I'U .. ~ ' 4' ~ * ~47S

k" " litr

*UNwR-

.%0

4."

c e

40 01

u

a~ ve
.. a * 9

a *A *h E *

U~ c- U N.40 CL a' MU.
*L q. w4 a

C . 40 40 a. 0 Ce
a 552 1 to0 *. G

VSai 0 00 au 0m
4A' CC to C E L

* '4 I E .C uC
SO Eu- C,4

CC a6 u 4

of & .E Su C U

5-. ~ . 4 S 4 * 4 74

4-VV

CL, V C"

fA u

ti -P

I4-

LOP *

CA 5 4.

0..C

.0 4

mS 4 00 to-
V-4 v e0*

40644 CL0

0tW V .. CC.

.05 11 440
00 4 0 0a4

*x onW ..4 -.4 1
-fe f- .

WV Oh q.544u Orm *.0U 0
.41Aft 1A 0 0P04.' 44 at

'344 WV . S '. 5 -- '7 7

Wb. 04 SL 4

;zSo 1

-Im
9-cc-Pt4

I o"d I g

04 u 0 a 0

st C"
0 a wu It.

a-. V-4 34 1.
a S.o..G w4

uam.-4 43 a p 1*0
I',..-'~ 5- 0 u4 p

3 * 3

*~q. .4~aS.78

LIST OF REFERENCES

1. Fairchild Camera and Instrument Corporation,
Microprocessor Division, F9450 High-Performance 16-Bit
Bipolar Microprocessor, Preliminary Data Sheet - July
1984, pp. 2, July 1984.

2. Fairchild Camera and Instrument Corporation,
Microprocessor Division, F9450 High-Performance 16-Bit

__ Bipolar Microprocessor, Preliminary Data Sheet - July
1984, pp. 16, July 1984.

3. Texas Instruments Corporation, MPP/1750A USER'S
MANUAL pp. 1-2, Release 1.3.

4. Duda, R. 0., and Hart, P. E., Pattern Classification
*and Scene Analysis, pp. 267-272, John Wiley and Sons,
* Inc., 1973.

5. Duda, R. 0., and Hart, P. E., Pattern Classification
and Scene Analysis, pp. 13-17, John Wiley and Sons,
Inc., 1973.

6. Levy, H. M. and Eckhouse, R. H. Jr., Computer
Programing and Architecture, the VAX-11, 1st ed., pp.
80, Digital Press, April 1980.

7. Texas Instruments Corporation, MPP/1750A USER'S
MANUAL pp. 2-9 - 2-10, Release 1.3.

8. Texas Instruments Corporation, MPP/1750A USER'S
MANUAL, pp. D-1 - D-2, Release 1.3.

O7

INITIAL DISTRIBUTION LIST

No. of Copies

1. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

2. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

3. Department Chairman, Code 62
Department of Electrical and Computer
Engineering

L- Monterey, California 93943

4. Professor Chin-Hwa Lee, Code 62Le 2
* Department of Electrical and Computer

Engineering
Naval Postgraduate School
Monterey, California 93943

5. Professor Alex Gerba Jr., Code 62Gz
Department of Electrical and Computer
Engineering
Naval Postgraduate School
Monterey, California 93943

6. Commanding Officer
Naval Ocean System Center
Attn: Lt. Percy D. Cody IllI
San Diego, California 92152

7. Commanding Officer
Naval Ocean System Center

Attn: C. E. Holland Jr. Code 811
San Diego, California 92152

8. Commanding Officer
Naval Ocean System Center
Attn: Mike Stelmach Code 811

*San Diego, California 92152

9. Commanding Officer
Naval Ocean System Center
Attn: James Wasson Code 811
San Diego, California 92152

Jw 80

FLMIF
"ow-

